Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.840
1.
J Med Chem ; 67(9): 7245-7259, 2024 May 09.
Article En | MEDLINE | ID: mdl-38635563

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.


Agammaglobulinaemia Tyrosine Kinase , Pyrophosphatases , Humans , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Structure-Activity Relationship , Crystallography, X-Ray , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/chemical synthesis , Drug Discovery , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Adenine/metabolism , Models, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
2.
Life Sci ; 346: 122644, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614300

Fibrosis is a pathological phenomenon characterized by the aberrant accumulation of extracellular matrix (ECM) in tissues. Fibrosis is a universally age-related disease involving that many organs and is the final stage of many chronic inflammatory diseases, which often threaten the patient's health. Undoubtedly, fibrosis has become a serious economic and health burden worldwide, However, the pathogenesis of fibrosis is complex. Further, the key molecules still remain to be unraveled. Hence, so far, there have been no effective treatments designed against the key targets of fibrosis. The methylation modification on the nitrogen atom at position 6 of adenine (m6A) is the most common mRNA modification in mammals. There is increasing evidence that m6A is actively involved in the pathogenesis of fibrosis. This review aims to highlight m6A-associated mechanisms and functions in several organic fibrosis, which implies that m6A is universal and critical for fibrosis and summarize the outlook of m6A in the treatment of fibrosis. This may light up the unknown aspects of this condition for researchers interested to explore fibrosis further.


Fibrosis , Humans , Fibrosis/metabolism , Methylation , Animals , Extracellular Matrix/metabolism , Adenosine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adenine/metabolism , Adenine/analogs & derivatives , RNA/genetics , RNA/metabolism , RNA Methylation
3.
Plant Sci ; 342: 112055, 2024 May.
Article En | MEDLINE | ID: mdl-38432357

DNA N6-methyladenine (6 mA) has recently been discovered as a novel DNA modification in animals and plants. In mammals, AlkB homolog 1 (ALKBH1) has been identified as a DNA 6 mA demethylase. ALKBH1 tightly controls the DNA 6 mA methylation level of mammalian genomes and plays important role in regulating gene expression. DNA 6 mA methylation has also been reported to exist in plant genomes, however, the plant DNA 6 mA demethylases and their function remain largely unknown. Here we identify homologs of ALKBH1 as DNA 6 mA demethylases in Arabidopsis. We discover that there are four homologs of ALKBH1, AtALKBH1A, AtALKBH1B, AtALKBH1C and AtALKBH1D, in Arabidopsis. In vitro enzymatic activity studies reveal that AtALKBH1A and 1D can efficiently erase DNA 6 mA methylation. Loss of function of AtALKBH1A and AtALKBH1D causes elevated DNA 6 mA methylation levels in vivo. atalkbh1a/1d mutant displays delayed seed gemination. Based on our RNA-seq data, we find some regulators of seed gemination are dysregulated in atalkbh1a/1d, and the dysregulation is correlated with changes of DNA 6 mA methylation levels. This study identifies plant DNA 6 mA demethylases and reports the function of DNA 6 mA methylation in regulating seed germination.


Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Adenine/metabolism , DNA Methylation/genetics , Genome, Plant , DNA, Plant/metabolism , Mammals/metabolism
4.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38452196

Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.


Adenine , Escherichia coli , Adenine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ecosystem , Purines/metabolism , Computer Simulation
5.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38542420

Chronic kidney disease (CKD) represents a major public health burden with increasing prevalence. Current therapies focus on delaying CKD progression, underscoring the need for innovative treatments. This necessitates animal models that accurately reflect human kidney pathologies, particularly for studying potential reversibility and regenerative mechanisms, which are often hindered by the progressive and irreversible nature of most CKD models. In this study, CKD was induced in mice using a 0.2% adenine-enriched diet for 4 weeks, followed by a recovery period of 1 or 2 weeks. The aim was to characterize the impact of adenine feeding on kidney function and injury as well as water and salt homeostasis throughout disease progression and recovery. The adenine diet induced CKD is characterized by impaired renal function, tubular injury, inflammation, and fibrosis. A significant decrease in urine osmolality, coupled with diminished aquaporin-2 (AQP2) expression and membrane targeting, was observed after adenine treatment. Intriguingly, these parameters exhibited a substantial increase after a two-week recovery period. Despite these functional improvements, only partial reversal of inflammation, tubular damage, and fibrosis were observed after the recovery period, indicating that the inclusion of the molecular and structural parameters is needed for a more complete monitoring of kidney status.


Aquaporin 2 , Renal Insufficiency, Chronic , Humans , Mice , Animals , Aquaporin 2/metabolism , Water/metabolism , Adenine/metabolism , Disease Models, Animal , Kidney/metabolism , Renal Insufficiency, Chronic/metabolism , Inflammation/metabolism , Fibrosis
6.
Food Chem ; 448: 139076, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38537545

One of the main reasons for hyperuricemia is high purine intake. The primary strategy for treating hyperuricemia is blocking the purine metabolism enzyme. However, by binding the purine bases directly, we suggested a unique therapeutic strategy that might interfere with purine metabolism. There have been numerous reports of extensive interactions between proteins and purine bases. Adenine, constituting numerous protein co-factors, can interact with the adenine-binding motif. Using Bayesian Inference and Markov chain Monte Carlo sampling, we created a novel adenine-binding peptide Ile-Tyr-Val-Thr based on the structure of the adenine-binding motifs. Ile-Tyr-Val-Thr generates a semi-pocket that can clip the adenine within, as demonstrated by docking. Then, using thermodynamic techniques, the interaction between Ile-Tyr-Val-Thr and adenine was confirmed. The KD value is 1.50e-5 (ΔH = -20.2 kJ/mol and ΔG = -27.6 kJ/mol), indicating the high affinity. In brief, the adenine-binding peptide Ile-Tyr-Val-Thr may help lower uric acid level by blocking the absorption of food-derived adenine.


Adenine , Bayes Theorem , Monte Carlo Method , Peptides , Adenine/chemistry , Adenine/metabolism , Peptides/chemistry , Peptides/metabolism , Molecular Docking Simulation , Protein Binding , Hyperuricemia/metabolism , Humans , Thermodynamics , Uric Acid/chemistry , Uric Acid/metabolism , Binding Sites
7.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480545

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hordeum/genetics , Hordeum/metabolism , RNA, Small Interfering/genetics , Nucleotides/metabolism , Adenine/metabolism , DNA Methylation/genetics , RNA, Plant/genetics
8.
Genome Res ; 34(2): 256-271, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38471739

The formation of resting cysts commonly found in unicellular eukaryotes is a complex and highly regulated survival strategy against environmental stress that involves drastic physiological and biochemical changes. Although most studies have focused on the morphology and structure of cysts, little is known about the molecular mechanisms that control this process. Recent studies indicate that DNA N 6-adenine methylation (6mA) could be dynamically changing in response to external stimuli; however, its potential role in the regulation of cyst formation remains unknown. We used the ciliate Pseudocohnilembus persalinus, which can be easily induced to form cysts to investigate the dynamic pattern of 6mA in trophonts and cysts. Single-molecule real-time (SMRT) sequencing reveals high levels of 6mA in trophonts that decrease in cysts, along with a conversion of symmetric 6mA to asymmetric 6mA. Further analysis shows that 6mA, a mark of active transcription, is involved in altering the expression of encystment-related genes through changes in 6mA levels and 6mA symmetric-to-asymmetric conversion. Most importantly, we show that reducing 6mA levels by knocking down the DNA 6mA methyltransferase PpAMT1 accelerates cyst formation. Taken together, we characterize the genome-wide 6mA landscape in P. persalinus and provide insights into the role of 6mA in gene regulation under environmental stress in eukaryotes. We propose that 6mA acts as a mark of active transcription to regulate the encystment process along with symmetric-to-asymmetric conversion, providing important information for understanding the molecular response to environmental cues from the perspective of 6mA modification.


DNA Methylation , Eukaryota , Eukaryota/genetics , DNA/chemistry , Gene Expression Regulation , Adenine/chemistry , Adenine/metabolism
9.
Article En | MEDLINE | ID: mdl-38359644

Adenine phosphoribosyltransferase (APRT) deficiency is a rare , hereditary disorder characterized by renal excretion of 2,8-dihydroxyadenine (DHA), leading to kidney stone formation and chronic kidney disease (CKD). Treatment with a xanthine oxidoreductase inhibitor, allopurinol or febuxostat, reduces urinary DHA excretion and slows the progression of CKD. The method currently used for therapeutic monitoring of APRT deficiency lacks specificity and thus, a more reliable measurement technique is needed. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification of DHA, adenine, allopurinol, oxypurinol and febuxostat in human plasma was optimized and validated. Plasma samples were prepared with protein precipitation using acetonitrile followed by evaporation. The chemometric approach design of experiments was implemented to optimize gradient steepness, amount of organic solvent, flow rate, column temperature, cone voltage, desolvation temperature and desolvation flow rate. Experimental screening was conducted using fractional factorial design with addition of complementary experiments at the axial points for optimization of peak area, peak resolution and peak width. The assay was validated according to the US Food and Drug Administration guidelines for bioanalytical method validation over the concentration range of 50 to 5000 ng/mL for DHA, allopurinol and febuxostat, 100 to 5000 ng/mL for adenine and 50 to 12,000 ng/mL for oxypurinol, with r2 ≥ 0.99. The analytical assay achieved acceptable performance of accuracy (-10.8 to 8.3 %) and precision (CV < 15 %). DHA, adenine, allopurinol, oxypurinol and febuxostat were stable in plasma samples after five freeze-thaw cycles at -80 °C and after storage at -80 °C for 12 months. The assay was evaluated for quantification of the five analytes in clinical plasma samples from six APRT deficiency patients and proved to be both efficient and accurate. The proposed assay will be valuable for guiding pharmacotherapy and thereby contribute to improved and more personalized care for patients with APRT deficiency.


Adenine Phosphoribosyltransferase/deficiency , Adenine/analogs & derivatives , Allopurinol , Metabolism, Inborn Errors , Renal Insufficiency, Chronic , Urolithiasis , Humans , Allopurinol/therapeutic use , Oxypurinol , Febuxostat , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Adenine/metabolism , Adenine Phosphoribosyltransferase/metabolism , Renal Insufficiency, Chronic/drug therapy
10.
Nat Commun ; 15(1): 1458, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368418

Nme2Cas9 has been established as a genome editing platform with compact size, high accuracy, and broad targeting range, including single-AAV-deliverable adenine base editors. Here, we engineer Nme2Cas9 to further increase the activity and targeting scope of compact Nme2Cas9 base editors. We first use domain insertion to position the deaminase domain nearer the displaced DNA strand in the target-bound complex. These domain-inlaid Nme2Cas9 variants exhibit shifted editing windows and increased activity in comparison to the N-terminally fused Nme2-ABE. We next expand the editing scope by swapping the Nme2Cas9 PAM-interacting domain with that of SmuCas9, which we had previously defined as recognizing a single-cytidine PAM. We then use these enhancements to introduce therapeutically relevant edits in a variety of cell types. Finally, we validate domain-inlaid Nme2-ABEs for single-AAV delivery in vivo.


Adenine , CRISPR-Associated Protein 9 , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Adenine/metabolism , Gene Editing , DNA/genetics , CRISPR-Cas Systems
11.
Plant Commun ; 5(3): 100773, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38007614

Epigenetic marks on histones and DNA, such as DNA methylation at N6-adenine (6mA), play crucial roles in gene expression and genome maintenance, but their deposition and function in microalgae remain largely uncharacterized. Here, we report a genome-wide 6mA map for the model industrial oleaginous microalga Nannochloropsis oceanica produced by single-molecule real-time sequencing. Found in 0.1% of adenines, 6mA sites are mostly enriched at the AGGYV motif, more abundant in transposons and 3' untranslated regions, and associated with active transcription. Moreover, 6mA gradually increases in abundance along the direction of gene transcription and shows special positional enrichment near splicing donor and transcription termination sites. Highly expressed genes tend to show greater 6mA abundance in the gene body than do poorly expressed genes, indicating a positive interaction between 6mA and general transcription factors. Furthermore, knockout of the putative 6mA methylase NO08G00280 by genome editing leads to changes in methylation patterns that are correlated with changes in the expression of molybdenum cofactor, sulfate transporter, glycosyl transferase, and lipase genes that underlie reductions in biomass and oil productivity. By contrast, knockout of the candidate demethylase NO06G02500 results in increased 6mA levels and reduced growth. Unraveling the epigenomic players and their roles in biomass productivity and lipid metabolism lays a foundation for epigenetic engineering of industrial microalgae.


DNA Methylation , Epigenomics , Chromosome Mapping , Adenine/metabolism , Lipids
12.
Nat Biotechnol ; 42(4): 638-650, 2024 Apr.
Article En | MEDLINE | ID: mdl-37322276

Base editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing. We found that a fusion of mouse alkyladenine DNA glycosylase (mAAG) with nickase Cas9 and deaminase TadA-8e catalyzed adenosine transversion in specific sequence contexts. Laboratory evolution of mAAG significantly increased A-to-C/T conversion efficiency up to 73% and expanded the targeting scope. Further engineering yielded adenine-to-cytosine base editors (ACBEs), including a high-accuracy ACBE-Q variant, that precisely install A-to-C transversions with minimal Cas9-independent off-targeting effects. ACBEs mediated high-efficiency installation or correction of five pathogenic mutations in mouse embryos and human cell lines. Founder mice showed 44-56% average A-to-C edits and allelic frequencies of up to 100%. Adenosine transversion editors substantially expand the capabilities and possible applications of base editing technology.


Adenine , Gene Editing , Animals , Mice , Humans , Adenine/metabolism , Mutation , Cytosine/metabolism , Adenosine , CRISPR-Cas Systems/genetics , Mammals/genetics
13.
J Agric Food Chem ; 72(1): 726-741, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38112282

RNA modifications play key roles in eukaryotes, but the functions in Aspergillus flavus are still unknown. Temperature has been reported previously to be a critical environmental factor that regulates the aflatoxin production of A. flavus, but much remains to be learned about the molecular networks. Here, we demonstrated that 12 kinds of RNA modifications in A. flavus were significantly changed under 29 °C compared to 37 °C incubation; among them, m6A was further verified by a colorimetric method. Then, the transcriptome-wide m6A methylome and m6A-altered genes were comprehensively illuminated through methylated RNA immunoprecipitation sequencing and RNA sequencing, from which 22 differentially methylated and expressed transcripts under 29 °C were screened out. It is especially notable that AFCA_009549, an aflatoxin biosynthetic pathway gene (aflQ), and the m6A methylation of its 332nd adenine in the mRNA significantly affect aflatoxin biosynthesis in A. flavus both on media and crop kernels. The content of sterigmatocystin in both ΔaflQ and aflQA332C strains was significantly higher than that in the WT strain. Together, these findings reveal that RNA modifications are associated with secondary metabolite biosynthesis of A. flavus.


Aflatoxins , Aspergillus flavus , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/metabolism , Adenine/metabolism , RNA/metabolism
14.
Free Radic Biol Med ; 212: 241-254, 2024 02 20.
Article En | MEDLINE | ID: mdl-38159891

Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.


Hydrogen Peroxide , NAD , Animals , Humans , Mice , NAD/metabolism , NADP/metabolism , Glutathione Disulfide/metabolism , HeLa Cells , HEK293 Cells , Hydrogen Peroxide/metabolism , Fibroblasts/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Glutathione/metabolism , Oxidation-Reduction , Homeostasis , Adenine/metabolism , Mammals/metabolism
15.
Immunol Lett ; 265: 23-30, 2024 Feb.
Article En | MEDLINE | ID: mdl-38142781

Immunometabolism has been unveiled in the last decade to play a major role in controlling macrophage metabolism and inflammation. There has been a constant effort to understand the immunomodulating properties of regulated metabolites during inflammation with the aim of controlling and re-wiring aberrant macrophages in inflammatory diseases. M-CSF and GM-CSF-differentiated macrophages play a key role in mounting successful innate immune responses. When a resolution phase is not achieved however, GM-CSF macrophages contribute substantially more towards an adverse inflammatory milieu than M-CSF macrophages, consequently driving disease progression. Whether there are specific immunometabolites that determine the homoeostatic or inflammatory nature of M-CSF and GM-CSF-differentiated macrophages is still unknown. As such, we performed metabolomics analysis on LPS and IL-4-stimulated M-CSF and GM-CSF-differentiated human macrophages to identify differentially accumulating metabolites. Adenine was distinguished as a metabolite significantly higher in M-CSF-differentiated macrophages after both LPS or IL-4 stimulation. Human macrophages treated with adenine before LPS stimulation showed a reduction in inflammatory gene expression, cytokine secretion and surface marker expression. Adenine caused macrophages to become more quiescent by lowering glycolysis and OXPHOS which resulted in reduced ATP production. Moreover, typical metabolite changes seen during LPS-induced macrophage metabolic reprogramming were absent in the presence of adenine. Phosphorylation of metabolic signalling proteins AMPK, p38 MAPK and AKT were not responsible for the suppressed metabolic activity of adenine-treated macrophages. Altogether, in this study we highlight the immunomodulating capacity of adenine in human macrophages and its function in driving cellular quiescence.


Granulocyte-Macrophage Colony-Stimulating Factor , Macrophage Colony-Stimulating Factor , Humans , Adenine/metabolism , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Inflammation/metabolism , Interleukin-4/metabolism , Lipopolysaccharides/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages
16.
Sci Rep ; 13(1): 21953, 2023 12 11.
Article En | MEDLINE | ID: mdl-38081875

The preferred method for disease modeling using induced pluripotent stem cells (iPSCs) is to generate isogenic cell lines by correcting or introducing pathogenic mutations. Base editing enables the precise installation of point mutations at specific genomic locations without the need for deleterious double-strand breaks used in the CRISPR-Cas9 gene editing methods. We created a bulk population of iPSCs that homogeneously express ABE8e adenine base editor enzyme under a doxycycline-inducible expression system at the AAVS1 safe harbor locus. These cells enabled fast, efficient and inducible gene editing at targeted genomic regions, eliminating the need for single-cell cloning and screening to identify those with homozygous mutations. We could achieve multiplex genomic editing by creating homozygous mutations in very high efficiencies at four independent genomic loci simultaneously in AAVS1-iABE8e iPSCs, which is highly challenging with previously described methods. The inducible ABE8e expression system allows editing of the genes of interest within a specific time window, enabling temporal control of gene editing to study the cell or lineage-specific functions of genes and their molecular pathways. In summary, the inducible ABE8e system provides a fast, efficient and versatile gene-editing tool for disease modeling and functional genomic studies.


Gene Editing , Induced Pluripotent Stem Cells , Gene Editing/methods , CRISPR-Cas Systems/genetics , Induced Pluripotent Stem Cells/metabolism , Adenine/metabolism , Mutation
17.
Mol Cell ; 83(24): 4494-4508.e6, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38016476

In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.


Adenine , Processing Bodies , Protein Biosynthesis , RNA-Binding Proteins , Humans , Chromatography, Liquid , HeLa Cells , Polyribosomes/genetics , Proteomics , RNA, Messenger/genetics , Tandem Mass Spectrometry , Adenine/analogs & derivatives , Adenine/metabolism , RNA-Binding Proteins/metabolism
18.
Clin Immunol ; 257: 109838, 2023 12.
Article En | MEDLINE | ID: mdl-37935312

The role of m6A in ankylosing spondylitis (AS) remains largely obscure. In this study, we found that m6A modification was decreased in T cells of AS, and the abnormal m6A modification was attributed to the downregulation of methyltransferase-like 14 (METTL14). METTL14 exerted a critical role in regulating autophagy activity and inflammation via targeting Forkhead box O3a (FOXO3a). Mechanistically, the loss of METTL14 decreased the expression of FOXO3a, leading to the damage of autophagic flux and the aggravation of inflammation. Inversely, the forced expression of METTL14 upregulated the expression of FOXO3a, thereby activating autophagy and alleviating inflammation. Furthermore, our results revealed that METTL14 targeted FOXO3a mRNA and regulated its expression and stability in a m6A-dependent manner. These findings uncovered the functional importance of m6A methylation mechanisms in the regulation of autophagy and inflammation, which expanded our understanding of this interaction and was critical for the development of therapeutic strategies for AS.


Adenine , Autophagy , Forkhead Box Protein O3 , Inflammation , Methyltransferases , Spondylitis, Ankylosing , Humans , Adenine/metabolism , Autophagy/genetics , Inflammation/genetics , Methyltransferases/genetics , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/pathology , Forkhead Box Protein O3/metabolism
19.
Int J Biol Macromol ; 253(Pt 7): 127418, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37848112

Adenine base editors, enabling targeted A-to-G conversion in genomic DNA, have enormous potential in therapeutic applications. However, the currently used adenine base editors are limited by wide editing windows and off-target effects in genetic therapy. Here, we report human e18 protein, a RING type E3 ubiquitin ligase variant, fusing with adenine base editors can significantly improve the preciseness and narrow the editing windows compared with ABEmax and ABE8e by diminishing the abundance of base editor protein. As a proof of concept, ABEmax-e18 and ABE8e-e18 dramatically decrease Cas9-dependent and Cas9-independent off-target effects than traditional adenine base editors. Moreover, we utilized ABEmax-e18 to establish syndactyly mouse models and achieve accurate base conversion at human PCSK9 locus in HepG2 cells which exhibited its potential in genetic therapy. Furthermore, a truncated version of base editors-RING (ABEmax-RING or AncBE4max-RING), which fusing the 63 amino acids of e18 protein RING domain to the C terminal of ABEmax or AncBE4max, exhibited similar effect compared to ABEmax-e18 or AncBE4max-e18.In summary, the e18 or RING protein fused with base editors strengthens the precise toolbox in gene modification and maybe works well with various base editing tools with a more applicable to precise genetic therapies in the future.


CRISPR-Cas Systems , Proprotein Convertase 9 , Animals , Mice , Humans , Proprotein Convertase 9/metabolism , CRISPR-Cas Systems/genetics , Adenine/metabolism , Gene Editing , DNA/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article En | MEDLINE | ID: mdl-37834309

N6-methyladenine (6mA) in the DNA is a conserved epigenetic mark with various cellular, physiological and developmental functions. Although the presence of 6mA was discovered a few years ago in the nuclear genome of distantly related animal taxa and just recently in mammalian mitochondrial DNA (mtDNA), accumulating evidence at present seriously questions the presence of N6-adenine methylation in these genetic systems, attributing it to methodological errors. In this paper, we present a reliable, PCR-based method to determine accurately the relative 6mA levels in the mtDNA of Caenorhabditis elegans, Drosophila melanogaster and dogs, and show that these levels gradually increase with age. Furthermore, daf-2(-)-mutant worms, which are defective for insulin/IGF-1 (insulin-like growth factor) signaling and live twice as long as the wild type, display a half rate at which 6mA progressively accumulates in the mtDNA as compared to normal values. Together, these results suggest a fundamental role for mtDNA N6-adenine methylation in aging and reveal an efficient diagnostic technique to determine age using DNA.


DNA Methylation , DNA, Mitochondrial , Animals , Dogs , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Adenine/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Aging/genetics , Mammals/metabolism
...